cs_rctn_aqu.f90 Source File


This file depends on

sourcefile~~cs_rctn_aqu.f90~~EfferentGraph sourcefile~cs_rctn_aqu.f90 cs_rctn_aqu.f90 sourcefile~aquifer_module.f90 aquifer_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~aquifer_module.f90 sourcefile~constituent_mass_module.f90 constituent_mass_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~constituent_mass_module.f90 sourcefile~cs_aquifer.f90 cs_aquifer.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~cs_aquifer.f90 sourcefile~cs_data_module.f90 cs_data_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~cs_data_module.f90 sourcefile~cs_module.f90 cs_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~cs_module.f90 sourcefile~hydrograph_module.f90 hydrograph_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~hydrograph_module.f90 sourcefile~organic_mineral_mass_module.f90 organic_mineral_mass_module.f90 sourcefile~cs_rctn_aqu.f90->sourcefile~organic_mineral_mass_module.f90 sourcefile~basin_module.f90 basin_module.f90 sourcefile~hydrograph_module.f90->sourcefile~basin_module.f90 sourcefile~time_module.f90 time_module.f90 sourcefile~hydrograph_module.f90->sourcefile~time_module.f90 sourcefile~carbon_module.f90 carbon_module.f90 sourcefile~organic_mineral_mass_module.f90->sourcefile~carbon_module.f90

Source Code

      subroutine cs_rctn_aqu !rtb cs
      
!!    ~ ~ ~ PURPOSE ~ ~ ~
!!    this subroutine updates constituent concentrations based on chemical reactions in groundwater

      use hydrograph_module, only : ob,icmd
      use aquifer_module
      use constituent_mass_module
      use cs_data_module
      use organic_mineral_mass_module
      use cs_module
      use cs_aquifer

      implicit none

      integer :: n = 0
      integer :: iaq = 0
      real :: conc_old
      real :: conc_new
      real :: conc_rg
      real :: k_rg
      real :: phi_value
      real :: gw_volume = 0.
      real :: mass_seo4_before = 0.
      real :: mass_seo3_before = 0.
      real :: mass_seo4_after = 0.
      real :: mass_seo3_after = 0.
      real :: cs_mass_kg = 0.
      dimension conc_old(3),conc_new(3),conc_rg(3),k_rg(4,3),phi_value(3)
        
      !aquifer ID
      iaq = ob(icmd)%num
      
      !volume of groundwater in the aquifer
      gw_volume = (aqu_d(iaq)%stor/1000.)*(ob(icmd)%area_ha*10000.) !m3 of groundwater
      
      mass_seo4_before = 0.
      mass_seo4_after = 0.
      mass_seo3_before = 0.
      mass_seo3_after = 0.
      
      !retrieve the current (daily) selenium groundwater concentration
      conc_old(1) = cs_aqu(iaq)%csc(1) !mg/L
      conc_old(2) = cs_aqu(iaq)%csc(2) !mg/L
      cs_mass_kg = aqu_d(iaq)%no3_st * ob(icmd)%area_ha !kg
      if(gw_volume > 0) then
        conc_old(3) = (cs_mass_kg * 1000.) / gw_volume !g/m3 = mg/L
      else
        conc_old(3) = 0.
      endif
      
      !retrieve the current mass concentrations
      mass_seo4_before = cs_aqu(iaq)%cs(1) !kg
      mass_seo3_before = cs_aqu(iaq)%cs(2) !kg

      !calculate the change in species concentrations using the 4th-order Runge-Kutta scheme.
      !for each slope, the Runge-Kutta slopes will be calculated using the R-K concentrations.
        
      !K1 (first slope)
      conc_rg(1) = conc_old(1)
      conc_rg(2) = conc_old(2)
      conc_rg(3) = conc_old(3)
      call se_reactions_aquifer(iaq,conc_rg,k_rg,1)

      !K2 (second slope)
      conc_rg(1) = conc_old(1) + (0.5*1*k_rg(1,1))
      conc_rg(2) = conc_old(2) + (0.5*1*k_rg(1,2))
      conc_rg(3) = conc_old(3) + (0.5*1*k_rg(1,3))
      call se_reactions_aquifer(iaq,conc_rg,k_rg,2)

      !K3 (third slope)
      conc_rg(1) = conc_old(1) + (0.5*1*k_rg(2,1))
      conc_rg(2) = conc_old(2) + (0.5*1*k_rg(2,2))
      conc_rg(3) = conc_old(3) + (0.5*1*k_rg(2,3))
      call se_reactions_aquifer(iaq,conc_rg,k_rg,3)

      !K4 (fourth slope)
      conc_rg(1) = conc_old(1) + (1*k_rg(3,1))
      conc_rg(2) = conc_old(2) + (1*k_rg(3,2))
      conc_rg(3) = conc_old(3) + (1*k_rg(3,3))
      call se_reactions_aquifer(iaq,conc_rg,k_rg,4)

      !calculate new concentration
      do n=1,3
        !calculate the increment, then the new concentration
        phi_value(n) = (1./6.) * (k_rg(1,n) + (2*k_rg(2,n)) + (2*k_rg(3,n)) +   k_rg(4,n))
        conc_new(n) = conc_old(n) + (phi_value(n)*1)
      enddo

      !store new concentration values
      cs_aqu(iaq)%csc(1) = conc_new(1)
      cs_aqu(iaq)%csc(2) = conc_new(2)
      aqu_d(iaq)%no3_st = (conc_new(3)/1000.)*gw_volume / ob(icmd)%area_ha !kg of no3-n per ha

      !convert to kg
      cs_aqu(iaq)%cs(1) = (cs_aqu(iaq)%csc(1)*gw_volume) / 1000.
      cs_aqu(iaq)%cs(2) = (cs_aqu(iaq)%csc(2)*gw_volume) / 1000.

      !check mass after chemical reactions
      mass_seo4_after = cs_aqu(iaq)%cs(1) !kg
      mass_seo3_after = cs_aqu(iaq)%cs(2) !kg

      !store mass balance terms
      acsb_d(iaq)%cs(1)%rctn = mass_seo4_after - mass_seo4_before !kg
      acsb_d(iaq)%cs(2)%rctn = mass_seo3_after - mass_seo3_before !kg    
      

      return
      end ! cs_rctn_aqu
      
      
      
      
      
      !rate laws for Se chemical reduction (seo4 --> seo3) --------------------------------------------------------------------------------
      subroutine se_reactions_aquifer(iaq,conc_rg,k_rg,k_slope)

      use cs_data_module

      implicit none

      integer :: iaq
      integer :: k_slope
      integer :: kk = 0
      real :: conc_rg
      real :: k_rg
      real :: cseo4 = 0.
      real :: cseo3 = 0.
      real :: no3inhib = 0.
      real :: seo4red = 0.
      real :: dseo4 = 0.
      real :: dseo3 = 0.
      real :: dno3 = 0.
      real :: cno3 = 0.
      real :: o2 = 0.
      real :: o2red = 0.
      real :: no3red = 0.
      real :: yseo4_o2 = 0.
      real :: yseo4_no3 = 0.
      real :: se_prod_o2 = 0.
      real :: se_prod_no3 = 0.
      real :: ko2a = 0.
      real :: kno3 = 0.
      real :: sseratio = 0.
      dimension conc_rg(3),k_rg(4,3)

      !get concentration of SeO4 and SeO3
      cseo4 = conc_rg(1)
      cseo3 = conc_rg(2)
      cno3 = conc_rg(3)

      !concentration of dissolved oxygen (O2) (specified in selenium input file)
      o2 = cs_rct_aqu(iaq)%oxy_aqu
       
      !rate law for selenate reduction
      no3inhib = cs_rct_aqu(iaq)%se_ino3 / (cs_rct_aqu(iaq)%se_ino3 + cno3)
      seo4red = cs_rct_aqu(iaq)%kseo4 * cseo4 * no3inhib
       
      !rate law for oxygen reduction and nitrate reduction, in the presence of shale
      yseo4_o2 = 315.84 / 224.0
      yseo4_no3 = 789.6 / 196.0
      no3red = 0.
      se_prod_o2 = 0.
      se_prod_no3 = 0.
      do kk=1,num_geol_shale
        !reduction of o2
        ko2a = cs_rct_aqu(iaq)%ko2a(kk)
        o2red = ko2a * o2 * cs_rct_aqu(iaq)%shale(kk)
        !reduction of no3
        kno3 = cs_rct_aqu(iaq)%kno3a(kk)
        no3red = no3red + (kno3 * cno3 * cs_rct_aqu(iaq)%shale(kk))
        !total selenium released from the shale (via oxidation)
        sseratio = cs_rct_aqu(iaq)%sseratio(kk)
        se_prod_o2 = se_prod_o2 + (o2red * yseo4_o2 * (1/sseratio))
        se_prod_no3 = se_prod_no3 + (no3red * yseo4_no3 * (1/sseratio))
      enddo
       
      !change in seo4 and seo3
      dseo4 = (se_prod_o2 + se_prod_no3) - seo4red
      dseo3 = seo4red !all of reduced seo4 becomes seo3
      dno3 = no3red * (-1)
       
      !store change in concentrations
      k_rg(k_slope,1) = dseo4
      k_rg(k_slope,2) = dseo3
      k_rg(k_slope,3) = dno3

      return 
      end !se_reactions_aquifer