SensitivityAnalyzer
SensitivityAnalyzer
Provide functionality for sensitivity analyzis.
Source code in pySWATPlus/sensitivity_analyzer.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | |
parameter_sensitivity_indices(sensim_file: str | pathlib.Path, df_name: str, sim_col: str, obs_file: str | pathlib.Path, date_format: str, obs_col: str, indicators: list[str], json_file: typing.Optional[str | pathlib.Path] = None) -> dict[str, typing.Any]
Compute parameter sensitivy indices for sample scenarios obtained using
the simulation_by_sample_parameters method.
The method returns a dictionary with two keys:
problem: The definition dictionary passed to sampling.sensitivty_indices: A dictionary where each key is an indicator name and the corresponding value contains the computed sensitivity indices obtained using theSALib.analyze.sobol.analyzemethod.
The sensitivity indices are computed for the specified list of indicators. Before computing the indicators, both simulated and observed values are normalized using the formula
(v - min_o) / (max_o - min_o), where min_o and max_o represent the minimum and maximum of observed values, respectively.
Note
All negative and None observed values are removed before computing min_o and max_o to prevent errors during normalization.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
sensim_file
|
str | Path
|
Path to the |
required |
df_name
|
str
|
Name of the |
required |
sim_col
|
str
|
Name of the column in |
required |
obs_file
|
str | Path
|
Path to the CSV file containing observed data. The file must include a
|
required |
date_format
|
str
|
Date format of the |
required |
obs_col
|
str
|
Name of the column in |
required |
indicators
|
list[str]
|
List of indicators to compute sensitivity indices. Available options:
|
required |
json_file
|
str | Path
|
Path to a JSON file for saving the output dictionary where each key is an indicator name
and the corresponding value is the computed sensitivity indices. If |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary with two keys, |
Source code in pySWATPlus/sensitivity_analyzer.py
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 | |
simulation_and_indices(parameters: newtype.BoundType, sample_number: int, sensim_dir: str | pathlib.Path, txtinout_dir: str | pathlib.Path, extract_data: dict[str, dict[str, typing.Any]], observe_data: dict[str, dict[str, str]], metric_config: dict[str, dict[str, str]], max_workers: typing.Optional[int] = None) -> dict[str, typing.Any]
Warning
This method is currently under development.
Provide a high-level interface for directly computing sensitivity indices. Similar to the method
simulation_by_sample_parameters,
it follows the same computational approach but skips saving the simulated data, instead computing sensitivity indices directly against the observed data.
The method returns a dictionary containing keys correspond to entries in metric_config, and values are the computed sensitivity indices.
The following JSON files are saved in sensim_dir:
sensitivity_indices.json: A dictionary where keys correspond to entries inmetric_config, and values are the computed sensitivity indices.time.json: A dictionary containing the computation time details.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
parameters
|
BoundType
|
List of dictionaries defining parameter configurations for sensitivity simulations. Each dictionary contain the following keys:
|
required |
sample_number
|
int
|
sample_number (int): Determines the number of samples.
Generates an array of length |
required |
sensim_dir
|
str | Path
|
Path to the directory where individual simulations for each parameter set will be performed. Raises an error if the folder is not empty. This precaution helps prevent data deletion, overwriting directories, and issues with reading required data files not generated by the simulation. |
required |
txtinout_dir
|
str | Path
|
Path to the |
required |
extract_data
|
dict[str, dict[str, Any]]
|
A nested dictionary specifying how to extract data from SWAT+ simulation output files.
The top-level keys are filenames of the output files, without paths (e.g.,
Note The sub-key |
required |
observe_data
|
dict[str, dict[str, str]]
|
A nested dictionary specifying observed data configuration. The top-level keys
are same as keys of
|
required |
metric_config
|
dict[str, dict[str, str]]
|
A nested dictionary specifying metric configuration. The top-level keys
are same as keys of
Tip Avoid using |
required |
max_workers
|
int
|
Number of logical CPUs to use for parallel processing. If |
None
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary where keys correspond to entries in |
Source code in pySWATPlus/sensitivity_analyzer.py
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 | |
simulation_by_sample_parameters(parameters: newtype.BoundType, sample_number: int, sensim_dir: str | pathlib.Path, txtinout_dir: str | pathlib.Path, extract_data: dict[str, dict[str, typing.Any]], max_workers: typing.Optional[int] = None, save_output: bool = True, clean_setup: bool = True) -> dict[str, typing.Any]
Provide a high-level interface for performing sensitivity simulations through parallel computing.
It uses the method SALib.sample.sobol.sample,
based on Sobol sequences, to generate samples from the defined parameter space.
For each sample, a dedicated directory is created, and a simulation is executed as a separate process using
concurrent.futures.ProcessPoolExecutor.
Simulations are executed asynchronously, and to ensure computational efficiency, only unique samples are simulated.
Each simulation directory is named sim_<i>, where i ranges from 1 to the number of unique simulations.
Simulation results are collected by mapping input samples to their corresponding simulation directories.
This mapping is then used to reorder the simulation outputs to match the original input samples.
The method returns a detailed dictionary containing time statistics, the problem definition, the sample array, and the simulation results for further analysis.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
parameters
|
BoundType
|
List of dictionaries defining parameter configurations for sensitivity simulations. Each dictionary contain the following keys:
|
required |
sample_number
|
int
|
sample_number (int): Determines the number of samples.
Generates an array of length |
required |
sensim_dir
|
str | Path
|
Path to the directory where individual simulations for each parameter set will be performed. Raises an error if the folder is not empty. This precaution helps prevent data deletion, overwriting directories, and issues with reading required data files not generated by the simulation. |
required |
txtinout_dir
|
str | Path
|
Path to the |
required |
extract_data
|
dict[str, dict[str, Any]]
|
A nested dictionary specifying how to extract data from SWAT+ simulation output files.
The top-level keys are filenames of the output files, without paths (e.g.,
|
required |
max_workers
|
int
|
Number of logical CPUs to use for parallel processing. If |
None
|
save_output
|
bool
|
If |
True
|
clean_setup
|
bool
|
If |
True
|
Returns:
| Type | Description |
|---|---|
dict[str, Any]
|
Dictionary with the follwoing keys:
|
Note
-
The
problemdictionary andsamplearray are used later to calculate Sobol indices when comparing performance metrics against observed data. -
The integer keys in the
simulationdictionary may not correspond directly to the simulation directory indices (given by thedirkey assim_<i>) due to deduplication and asynchronous execution. -
The output dictionary contains
datetime.dateobjects in thedatecolumn for eachDataFramein thesimulationdictionary. Thesedatetime.dateobjects are converted toDD-Mon-YYYYstrings when saving the output dictionary tosensitivity_simulation.jsonwithin thesensim_dir. -
The computation progress can be tracked through the following
consolemessages, where the simulation index ranges from 1 to the total number of unique simulations:Started simulation: <current_started_index>/<unique_simulations>Completed simulation: <current_completed_index>/<unique_simulations>
-
The disk space on the computer for
sensim_dirmust be sufficient to run parallel simulations (at leastmax_workerstimes the size of theTxtInOutfolder). Otherwise, no error will be raised by the system, but simulation outputs may not be generated.
Source code in pySWATPlus/sensitivity_analyzer.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | |