Scenario
Scenario
Provides functionality for running scenario simulations and analyzing simulated data.
Source code in pySWATPlus/scenario.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|
simulated_timeseries_df(data_file: str, unit_row: bool = True, start_date: typing.Optional[str] = None, end_date: typing.Optional[str] = None, filter_rows: dict[str, list[typing.Any]] = {}, retain_cols: typing.Optional[list[str]] = None) -> pandas.DataFrame
Extracts data from an input file produced by a simulation and generates
a time series DataFrame
by constructing a new date
column
containing datetime.date
objects created from the yr
, mon
, and day
columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data_file
|
str
|
Path to the target file used to generate the time series |
required |
unit_row
|
bool
|
If |
True
|
start_date
|
str
|
Start date in |
None
|
end_date
|
str
|
End date in |
None
|
filter_rows
|
dict[str, list[Any]]
|
Dictionary where each key is a column name, and the corresponding value is a list of values used to filter the DataFrame. By default, no row filtering is applied. |
{}
|
retain_cols
|
list[str]
|
List of column names to retain in the output |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
A time series DataFrame with a new column ( |
Source code in pySWATPlus/scenario.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
simulation_by_sobol_sample(var_names: list[str], var_bounds: list[list[float]], sample_number: int, simulation_folder: str, txtinout_folder: str, params: ParamsType, data_file: str, unit_row: bool = True, start_date: typing.Optional[str] = None, end_date: typing.Optional[str] = None, filter_rows: dict[str, list[typing.Any]] = {}, retain_cols: typing.Optional[list[str]] = None, max_workers: typing.Optional[int] = None, save_output: bool = True, clean_setup: bool = True) -> dict[str, typing.Any]
Provides a high-level interface for performing sensitivity simulations through parallel computing.
It uses the method SALib.sample.sobol.sample
,
based on Sobol sequences
, to generate samples from the defined parameter space.
For each sample, a dedicated directory is created, and a simulation is executed as a separate process using
concurrent.futures.ProcessPoolExecutor
.
Simulations are executed asynchronously, and to ensure computational efficiency, only unique samples are simulated.
Each simulation directory is named sim_<i>
, where i
ranges from 1 to the number of unique simulations.
Simulation results are collected by mapping input samples to their corresponding simulation directories.
This mapping is then used to reorder the simulation outputs to match the original input samples.
The method returns a detailed dictionary containing time statistics, the problem definition, the sample array, and the simulation results for further analysis.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_names
|
list[str]
|
List of parameter names used for sensitivity analysis, corresponding to entries in the input
For the given
|
required |
var_bounds
|
list[list[float]]
|
A list containing
|
required |
sample_number
|
int
|
sample_number (int): Determines the number of samples.
Generates an array of length |
required |
simulation_folder
|
str
|
Path to the folder where individual simulations for each parameter set will be performed. Raises an error if the folder is not empty. This precaution helps prevent data deletion, overwriting directories, and issues with reading required data files not generated by the simulation. |
required |
txtinout_folder
|
str
|
Path to the |
required |
params
|
ParamsType
|
Nested dictionary defining the parameter modifications to apply during the simulations.
Each parameter should include a default value (typically
|
required |
data_file
|
str
|
Path to the target file used to generate the time series |
required |
unit_row
|
bool
|
If |
True
|
start_date
|
str
|
Start date in |
None
|
end_date
|
str
|
End date in |
None
|
filter_rows
|
dict[str, list[Any]]
|
Dictionary where each key is a column name, and the corresponding value is a list of values used to filter the DataFrame. By default, no row filtering is applied. |
{}
|
retain_cols
|
list[str]
|
List of column names to retain in the output |
None
|
max_workers
|
int
|
Number of logical CPUs to use for parallel processing. By default, all available logical CPUs are used. |
None
|
save_output
|
bool
|
If |
True
|
clean_setup
|
bool
|
If |
True
|
Returns:
Type | Description |
---|---|
dict[str, Any]
|
A dictionary with the follwoing keys:
|
Note
-
The
problem
dictionary andsample
array are used later to calculate Sobol indices when comparing performance metrics against observed data. -
The integer keys in the
simulation
dictionary may not correspond directly to the simulation directory indices (given by thedir
key assim_<i>
) due to deduplication and asynchronous execution. -
The computation progress can be tracked through the following
console
messages, where the simulation index ranges from 1 to the total number of unique simulations:Started simulation: <started_index>/<unique_simulations>
Completed simulation: <completed_index>/<unique_simulations>
-
The disk space on the computer for
simulation_folder
must be sufficient to run parallel simulations (at leastmax_workers
times the size of theTxtInOut
folder). Otherwise, no error will be raised by the system, but simulation outputs may not be generated.
Source code in pySWATPlus/scenario.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 |
|